Electrocardiogram Pattern Recognition by Means of MLP Network and PCA: A Case Study on Equal Amount of Input Signal Types
نویسندگان
چکیده
At the present scenario, one of the main causes of death in developed and in emerging countries is the cardiovascular related diseases. Most of these deaths could be avoided if there was a pre-monitoring and a prediagnostic of these cardiac arrhythmia and myocardial isquemy by using an electrocardiogram (ECG) tool. In this scenario, this work proposes a system to help the doctor to detect cardiac arrhythmia. As reference, it uses the Normal, Fusion and PVC signals of the MIT database. Then, we extract the principal characteristics of the signal by means of the Principal Component Analysis (PCA) technique. One key-point in this work is the input signals extraction, which are captured in the same amount. So, the number of segments for each signal is the same. After signal preprocessing, they are applied to an Artificial Neural Network Multilayer Perceptron (ANN MLP). The MLP with 5 neurons was verified to have the best accuracy. Based on this idea (the use of the same information amount for all input signal types), we achieved better results in comparison with other works in the field. This consideration is very important due to the fact that the ANN could be more sensible to the signal type with major predominance.
منابع مشابه
Flow Pattern and Oil Holdup Prediction in Vertical Oil–Water Two–Phase Flow Using Pressure Fluctuation Signal
In this work, the feasibility of flow pattern and oil hold up the prediction for vertical upward oil–water two–phase flow using pressure fluctuation signals was experimentally investigated. Water and diesel fuel were selected as immiscible liquids. Oil hold up was measured by Quick Closing Valve (QCV) technique, and five flow patterns were identified using high-speed photo...
متن کاملComparison of MLP NN Approach with PCA and ICA for Extraction of Hidden Regulatory Signals in Biological Networks
The biologists now face with the masses of high dimensional datasets generated from various high-throughput technologies, which are outputs of complex inter-connected biological networks at different levels driven by a number of hidden regulatory signals. So far, many computational and statistical methods such as PCA and ICA have been employed for computing low-dimensional or hidden represe...
متن کاملAN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملFace Detection at the Low Light Environments
Today, with the advancement of technology, the use of tools for extracting information from video are much wider in terms of both visual power and the processing power. High-speed car, perfect detection accuracy, business diversity in the fields of medical, home appliances, smart cars, humanoid robots, military systems and the commercialization makes these systems cost effective. Among the most...
متن کاملApplication of Two Methods of Artificial Neural Network MLP, RBF for Estimation of Wind of Sediments (Case Study: Korsya of Darab Plain)
The lack of sediment gauging stations in the process of wind erosion, caused of estimate of sediment be process of necessary and important. Artificial neural networks can be used as an efficient and effective of tool to estimate and simulate sediments. In this paper two model multi-layer perceptron neural networks and radial neural network was used to estimate the amount of sediment in Korsya o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2002